Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

সেট

নবম-দশম শ্রেণি (মাধ্যমিক ২০২৫) - উচ্চতর গণিত সেট ও ফাংশন | - | NCTB BOOK
339
339

বাস্তব বা চিন্তা জগতের বস্তুর যেকোনো সুনির্ধারিত সংগ্রহকে সেট বলা হয়। যেমন S = {1, 4, 9, 16, 25, 36, 49, 64, 81, 100} তালিকাটি 10 থেকে বড় নয় এমন স্বাভাবিক সংখ্যার বর্গের সেট। সেটকে এভাবে তালিকার সাহায্যে বর্ণনা করাকে তালিকা পদ্ধতি বলা হয়। যে সকল বস্তু নিয়ে সেট গঠিত এদের প্রত্যেককে ঐ সেটের উপাদান বলা হয়।x,A সেটের উপাদান হলে লেখা হয় xA এবং x,A সেটের উপাদান না হলে লেখা হয়xA। উপরোক্ত সেট S কে লেখা যায় S = {x : x, 100 থেকে বড় নয় এমন পূর্ণবর্গ সংখ্যা}। এই পদ্ধতিকে সেট গঠন পদ্ধতি বলা হয়।

Content added By

সার্বিক সেট(Universal set)

292
292

মনে করি
S= {x : x ধনাত্মক পূর্ণসংখ্যা এবং 5x ≤ 16} 

T={x : x ধনাত্মক পূর্ণসংখ্যা এবং x2<20}

P={x : x ধনাত্মক পূর্ণসংখ্যা এবং x2

এই সেট তিনটির উপাদানসমূহ U ={x : x ধনাত্মক পূর্ণ সংখ্যা} সেটটির উপাদান নিয়ে গঠিত। U  কে S, T, P সেটের জন্য সার্বিক সেট বিবেচনা করা যায়।
সেট সংক্রান্ত কোনো আলোচনায় একটি নির্দিষ্ট সেটকে সার্বিক সেট বলা হয়, যদি আলোচনাধীন সকল সেটের উপাদানসমূহ ঐ নির্দিষ্ট সেটের অন্তর্ভুক্ত হয়।

 

Content added || updated By

কয়েকটি বিশেষ সংখ্যা সেট

225
225

N = {1, 2, 3, · · · } অর্থাৎ সকল স্বাভাবিক সংখ্যা বা ধনাত্মক পূর্ণ সংখ্যার সেট।
Z = {· · · · −2, −1, 0, 1, 2, 3,....... } অর্থাৎ সকল পূর্ণ সংখ্যার সেট।
Q = {x:x=pq, যেখানে p যেকোনো পূর্ণ সংখ্যা এবং q যেকোনো ধনাত্মক পূর্ণ সংখ্যা} অর্থাৎ q সকল মূলদ সংখ্যার সেট।
R = {x : x বাস্তব সংখ্যা} অর্থাৎ সকল বাস্তব সংখ্যার সেট।

Content added By

উপসেট(Subset)

262
262

A ও B সেট হলে A কে B এর উপসেট বলা হয় যদি ও কেবল যদি A এর প্রত্যেক উপাদান B এর উপাদান হয় এবং একে AB লিখে প্রকাশ করা হয়। যেমন A {2, 3}, B = {2, 3, 5, 7} এর উপসেট। A, B এর উপসেট না হলে AB লেখা হয়। যেমন A = {1,3}, B = {2, 3, 5, 7} এর উপসেট নয়।

উদাহরণ ১. যদি A = {x:x ধনাত্মক পূর্ণ সংখ্যা}, B = {0} এবং X = {x:x পূর্ণ সংখ্যা} হয়, তবে A, B এবং X এর মধ্যে সম্পর্ক কী?

সমাধান: এখানে AX, BX, BA

Content added By

ফাঁকা সেট(Empty set)

1.4k
1.4k

অনেক সময় এরূপ সেট বিবেচনা করতে হয় যাতে কোনো উপাদান থাকে না। এরূপ সেটকে ফাঁকা সেট বলা হয় এবং Ø অথবা {} লিখে প্রকাশ করা হয়।

উদাহরণ ২. {x:x বাস্তব সংখ্যা এবং x2<0} একটি ফাঁকা সেট, কেননা কোনো বাস্তব সংখ্যার বর্গ ঋণাত্মক নয়।

উদাহরণ ৩. F = {x:x, ২০১৪ সাল পর্যন্ত ফুটবলের বিশ্বকাপ বিজয়ী আফ্রিকার দেশ} একটি ফাঁকা সেট, কেননা আফ্রিকার কোনো দেশই ২০১৪ সাল পর্যন্ত ফুটবলের বিশ্বকাপ জয় করতে পারেনি।

Content added By

সেট সমতা(Equality of set)

556
556

A ও B সেট যদি এমন হয় যে এদের উপাদানগুলো একই তবে A ও B একই সেট এবং তা A = B লিখে প্রকাশ করা হয়। যেমন A = {1, 2, 3, 4}, B = {1, 2, 2, 3, 4, 4, 4}। লক্ষ কর কোনো সেটে একই উপাদান বার বার থাকলেও সেটা একবার থাকার মতই বিবেচনা করা হচ্ছে। A = B হয় যদি ও কেবল যদি ABএবং BA হয়। সেট সমতা প্রমাণে এই তথ্য খুবই প্রয়োজনীয়।

Content added By

প্রকৃত উপসেট(Proper subset)

235
235

A কে B এর প্রকৃত উপসেট বলা হয় যদি ও কেবল যদি AB এবং AV। অর্থাৎ A এর প্রত্যেক উপাদান B এরও উপাদান এবং B তে অন্তত একটি উপাদান আছে যা A তে নেই। যেমন A = {1, 2}, B = {1, 2, 3} । A, B এর প্রকৃত উপসেট বুঝাতে AB লেখা হয়।

ক) যেকোনো সেট A এর জন্য AA। এর কারণ x ∈ A ⇒ x ∈ A

খ) যেকোনো সেট A এর জন্য A। এর কারণ A না হলে  তে একটি উপাদান আছে যা A তে নাই। কিন্তু ইহা কখনই সত্য নয় কারণ Ø ফাঁকা সেট। অতএব A| উল্লেখ্য ফাঁকা সেট বা যেকোনো সেটের প্রকৃত উপসেট।

Content added By

সেটের অন্তর(Difference of set)

848
848

A ও B সেট হলে A \ B সেটটি হচ্ছে {x : x ∈ A এবং x B }
A \ B কে A বাদ B সেট বলা হয় এবং A এর যে সকল উপাদান B তে আছে সেগুলো A থেকে বর্জন করে A\ B গঠন করা হয়।A\BA

উদাহরণ ৪. A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} এবং B = {0, 2, 4, 6, 8, 10} হলে A \ B = {1, 3, 5, 7, 9} ।

Content added || updated By

পূরক সেট(Complementary set)

1.4k
1.4k

সার্বিক সেট U এবংAU হলে A এর পূরক সেট হচ্ছে U \ A
অর্থাৎ U \ A = {x:xU এবং xA} ।
সার্বিক সেট থেকে A সেটের উপাদানগুলো বর্জন করলেই A এর পূরক সেট পাওয়া যায় এবং তাকে A' বা Ac লিখে প্রকাশ করা হয়।

উদাহরণ ৫. যদি সার্বিক সেট U সকল পূর্ণসংখ্যার সেট হয় এবং A সকল ঋণাত্মক পূর্ণ সংখ্যার সেট হয়, তবে (U সাপেক্ষে) A এর পূরক সেট A'বা Ac = {0, 1, 2, 3, ... }

Content added By

শক্তি সেট(Power set)

1k
1k

A সেটের সকল উপসেটের সেটকে A এর শক্তি সেট বলা হয় এবং P(A) দ্বারা নির্দেশ করা হয়। উল্লেখ্য যে

Ø ⊆ A। কাজেই Ø, P(A) এরও উপাদান।

A সেট P(A) শক্তি সেট
A= PA=
A={a} PA=,A
A={a,b} PA=,a,b,A
A=a,b,c PA=,a,b,c,a,b,a,c,b,c,A


উদাহরণ ৬. A = {a, b} এবং B = {b, c} হলে দেখাও যে, PAPBPAB

সমাধান: এখানে

            PA=,a,b,c,a,b, PB=,b,c,b,cPAPB=,a,b,c,a,b,b,cAB=a,b,c, PAB=,a,b,c,a,b,a,c,b,c,a,b,c

 সুতরাং, PAPBPAB

Content added By

ভেনচিত্র(Venn Diagram)

483
483

সেট সংক্রান্ত তথ্যাদি অনেক সময় চিত্রে প্রকাশ করা সুবিধাজনক। উদ্ভাবক John Venn (১৮৩৪ - ১৯২৩) এর নামানুসারে এরূপ চিত্রকে ভেনচিত্র বলা হয়। গণিত বইতে এ সম্পর্কে বিশদ আলোচনা করা হয়েছে।

উদাহরণ ৭. সার্বিক সেট U এর সাপেক্ষে A সেট এর পূরক সেট A' এর চিত্ররূপ:

Content added || updated By

নিশ্ছেদ সেট(Disjoint set)

1.3k
1.3k

যদি A ও B সেট এমন হয় যে AB = Ø, তবে A ও B কে নিশ্ছেদ সেট বলা হয়।

উদাহরণ ৯. A {x : x ধনাত্মক পূর্ণ সংখ্যা} এবং B {x : x ঋণাত্মক পূর্ণ সংখ্যা} হলে A ও B সেটদ্বয় নিশ্ছেদ, কেননা AB=

উদাহরণ ১০.A = {x:xR এবং 0x2} এবং B = {x:xN এবং 0x2} হলে BA, AB=A, AB=B=1,2 

 

Content added || updated By

কার্তেসীয় গুনজসেট(Cartesian product set)

216
216

দুইটি সেট A এবং B এর কার্তেসীয় গুণজ A×B = {x,y:xAএবংyB}।

উদাহরণ ১১. A = {1, 2}, B = {a, b, c} দুইটি সেট। সুতরাং এই দুইটি সেটের কার্তেসীয় গুণজ সেট A×B=1,a,1,b,1,c,2,a,2,b,2,c |

Content added By

সেট প্রক্রিয়ার কতিপয় প্রতিজ্ঞা

487
487

এখানে প্রত্যেক ক্ষেত্রে U সার্বিক সেট এবং A,B,C সেটগুলো U এর উপসেট।

ক) বিনিময় বিধি
(১) AB=BA                                         (২) AB=BA

খ) সংযোগ বিধি
(১) ABC=ABC                    (২) ABC=ABC

গ) বন্টন বিধি
(১) ABC=ABAC          (২) An (BUC) = (AB) U (ANC)

ঘ) ডি মরগ্যানের সূত্র
(১) AB'=A'B'                                   (২) AB'=A'B'

ঙ) অন্যান্য সূত্র
(১) AA=A, AA=A                           (২) A=A, A= 

(৩) AU=U, AU=A                         (৪) ABB'A'

(৫) ABAB=B                              (৬) ABAB=A

(৭) AAB                                                (৮) ABA

(৯)A\B=AB'

Content added By

বিনিময় বিধির প্রতিজ্ঞা দুইটির যাচাইকরন

263
263

নিচের বামের চিত্রে গাঢ় অংশটুকু AB এবং BA উভয় সেটই নির্দেশ করে। সুতরাং এক্ষেত্রে দেখা যাচ্ছে AB=BA। নিচের ডানের চিত্রে গাঢ় অংশটুকু AB এবং BA উভয় সেটই নির্দেশ করে। সুতরাং এক্ষেত্রে দেখা যাচ্ছে AB=BA|

 

উপরে ভেনচিত্রের সাহায্যে যাচাই করা হয়েছে। এবার সুনির্দিষ্ট উদাহরণ দিয়ে দেখা যাক।

মনে করি A = {1,2,4} এবং B = {2, 3, 5} দুইটি সেট।

তাহলে,  ।

আবার, ।

সুতরাং এক্ষেত্রে AB=BA

অন্য দিকে, এবং ।

সুতরাং এক্ষেত্রে AB=BA

Content added || updated By

সংযোগ বিধির প্রতিজ্ঞা দুইটির যাচাইকরন

261
261

নিচের বামের চিত্রে গাঢ় অংশটুকু ABC এবং ABC উভয় সেটই নির্দেশ করে। সুতরাং এক্ষেত্রে ABC=ABC। নিচের ডানের চিত্রে গাঢ় অংশটুকু ABC এবং ABC উভয় সেটই নির্দেশ করে। সুতরাং এক্ষেত্রে ABC=ABC

 

উপরে ভেনচিত্রের সাহায্যে যাচাই করা হয়েছে। এবার সুনির্দিষ্ট উদাহরণ দিয়ে দেখা যাক।

মনে করি  এবং  ।

তাহলে, 

এবং ABC={a,b,c,d}  {b,c,d,f,g}={a,b,c,d,f,g}

আবার, AB={a,b,c,d}  {b,c,f}={a,b,c,d,f}

এবং (AB)C={a,b,c,d,f}  {c,d,g}={a,b,c,d,f,g}

সুতরাং এক্ষেত্রে ABC=A(BC)

আবার, BC={b,c,f}  {c,d,g}={c}

এবংA(BC)={a,b,c,d}  {c}={c} ।

আবার,AB={a,b,c,d}  {b,c,f}={b,c}

এবংABC={b,c}  {c,d,g}={c}

সুতরাং এক্ষেত্রে A(BC)=(AB)C

দ্রষ্টব্য: সেটের সংযোগ ও ছেদ প্রক্রিয়া দুইটির প্রতিটি অপরটির প্রেক্ষিতে বন্টন নিয়ম মেনে চলে।

প্রতিজ্ঞা ১ (ডি মরগ্যানের সূত্র): সার্বিক সেট U এর যেকোনো উপসেট A ও B এর জন্য

ক) AB'=A'B'                 খ) AB'=A'B'

প্রমাণ: ( কেবল প্রথমটির প্রমাণ নিচে দেখানো হয়েছে। পরেরটির প্রমাণ নিজে কর।)

ক) মনে করি,xAB'। তাহলে, xAB|

               xAএবং xB xA' এবং xB' xA'B'

AB'A'B'

আবার মনে করি,xA'B'। তাহলে, xA' এবং xB'

               xAএবংxBxABx(AB)'

A'B'=(AB)' 

সুতরাং (AB)'=A'B'
 

প্রতিজ্ঞা ২. সার্বিক সেট U এর যেকোনো উপসেট A ও B এর জন্য A\B=AB'

প্রমাণ: মনে করি, xA\B। তাহলে, xA এবং xB

                          xA এবং xB' xAB'

A\BAB'
 

আবার মনে করি, xAB'। তাহলে, xA এবং xB'

                          xAএবং xB xA\B

AB'A\B

সুতরাং, A\B=AB'
 

প্ৰতিজ্ঞা ৩. যেকোনো সেট A,B,C এর জন্য

                     ক) A×BC=A×B(A×C)

                      খ)A×(BC)=(A×B)(A×C)
 

প্রমাণ:(কেবল প্রথমটির প্রমাণ নিচে দেখানো হয়েছে। পরেরটির প্রমাণ নিজে কর।)

ক) সংজ্ঞানুসারে, A×(BC)

 

={x,y: xA, xB এবং yC}

={x,y: x,yA×B এবং x,yA×C}

 

A×(BC)A×BA×C

আবার, A×BA×C

={x,y:x,yA×B এবং x,yA×C}

={x,y: xA, yB এবং xA, yC}

 

 

A×BA×CA×BC

সুতরাং, A×BC=A×BA×C

Content added || updated By

সেট প্রক্রিয়া সংক্রান্ত আরও কতিপয় প্রতিজ্ঞা

192
192

সেট প্রক্রিয়া সংক্রান্ত আরো কতিপয় প্রতিজ্ঞা

ক) A যেকোনো সেট হলে AA

খ) ফাঁকা সেট  যেকোনো সেট A এর উপসেট।

গ) A ও B যেকোনো সেট হলে A=B হবে যদি ও কেবল যদি AB এবং BA হয়।

ঘ) যদি A হয়, তবে A=

ঙ) যদি AB এবং BC তবে, AC

চ) A ও B যেকোনো সেট হলে, ABA এবং ABB

ছ) A ও B যেকোনো সেট হলে, AAB এবং BAB

প্রমাণ: কেবল দুইটি প্রতিজ্ঞার প্রমাণ দেওয়া হয়েছে। অন্যগুলো নিজে কর।

ঘ) দেওয়া আছে, A, আবার আমরা জানি, A। সুতরাং A= ।

ছ) সেট সংযোগের সংজ্ঞানুযায়ী, A সেটের সকল উপাদান AB সেটে থাকে। সুতরাং উপসেটের সংজ্ঞানুযায়ী AAB। একই যুক্তিতে BAB

Content added || updated By

এক-এক মিল(One-one correspondence)

216
216

মনে করি, A= {a,b,c} তিনজন লোকের সেট এবং B= {30, 40, 50} ঐ তিনজন লোকের  বয়সের সেট। অধিকন্তু মনে করি, a এর

বয়স 30 বছর, b এর বয়স 40 বছর এবং c এর বয়স 50 বছর। বলা যায় যে, A সেটের সাথে B সেটের এক-এক মিল আছে।

সংজ্ঞা ১ (এক-এক মিল). যদি A সেটের প্রতিটি উপাদানের সাথে B সেটের একটি ও কেবল একটি উপাদান এবং B সেটের প্রতিটি

উপাদানের সাথে A সেটের একটি ও কেবল একটি উপাদানের মিল স্থাপন করা যায়, তবে তাকে A ও B এর মধ্যে এক-এক মিল বলা

হয়। A ও B এর মধ্যে এক-এক মিলকে সাধারণত AB লিখে প্রকাশ করা হয় এবং A সেটের কোনো সদস্য x এর সঙ্গে B

সেটের যেসদস্য y এর মিল করা হয়েছে তা xY লিখে বর্ণনা করা হয়।

Content added By

সমতুল সেট(Equivalent set)

806
806

ধরি, A = {1,2,3} এবং B = {a, b, c} দুইটি সেট। নিচের চিত্রে A ও B সেটদ্বয়ের মধ্যে একটি এক-এক মিল স্থাপন করে দেখানো হলো:

সংজ্ঞা ২ (সমতুল সেট). যেকোনো সেট A ও B এর মধ্যে যদি একটি এক-এক মিল AB বর্ণনা করা যায়, তবে A ও B কে সমতুল সেট বলা হয়। A ও B কে সমতুল বোঝাতে A~B লেখা হয়। A~B হলে, এদের যেকোনো একটিকে অপরটির সাথে সমতুল বলা হয়। লক্ষণীয় যে, যেকোনো সেট A, B ও C এর জন্য

ক) A~A

খ) A~B হলে B~A

গ) A~B এবং B~C হলে A~C

 

উদাহরণ ১২. দেখাও যে, A={1, 2, 3, · · ·, n} এবং B={1, 3, 5, · · ·, 2n – 1} সেটদ্বয় সমতুল, যেখানে n একটি স্বাভাবিক সংখ্যা।

সমাধান: A ও B সমতুল, কারণ সেট দুইটির মধ্যে নিচের মতো একটি এক-এক মিল রয়েছে।

মন্তব্য: উপরে চিত্রিত এক-এক মিলটিকে  AB:k2k-1, kA দ্বারা বর্ণনা করা যায়।

উদাহরণ ১৪. দেখাও যে, স্বাভাবিক সংখ্যার সেট N এবং জোড় সংখ্যার সেট A = {2, 4, 6, 2n, · } সমতুল।

সমাধান: N = {1, 2, 3, , n, . . . } ও A সমতুল সেট, কারণ N এবং A এর মধ্যে নিচের চিত্রের মতো একটি এক-এক মিল রয়েছে।

মন্তব্য: উপরে চিত্রিত এক-এক মিলটিকে NA:n2n,nN দ্বারা বর্ণনা করা যায়। 

দ্রষ্টব্য: ফাঁকা সেট কে নিজের সমতুল ধরা হয়। অর্থাৎ, ~

প্রতিজ্ঞা 8. প্রত্যেক সেট A তার নিজের সমতুল। অর্থাৎ, A~A

প্রমাণ: A= হলে, A~A ধরা হয়। আর A হলে প্রত্যেক সদস্য এর সঙ্গে তার নিজেকে মিল করে এক-এক মিল AA:xx,xA স্থাপিত হয়। সুতরাং A~A

প্রতিজ্ঞা ৫. A ও B সমতুল সেট এবং B ও C সমতুল সেট হলে A ও C সমতুল সেট।

প্রমাণ: যেহেতু A~B, সুতরাং A এর প্রত্যেক সদস্য x এর সঙ্গে B এর একটি অনন্য সদস্য এর মিল করা যায়। আবার যেহেতু B~C, সুতরাং B এর এই সদস্য y এর সঙ্গে C এর একটি অনন্য সদস্য z এর মিল করা যায়। এখন A এর সদস্য x এর সঙ্গে C এর সদস্য z এর মিল করা হলে, A ও C সেটের মধ্যে একটি এক-এক মিল স্থাপিত হয়। অর্থাৎ, A~C হয়।

Content added By

সান্ত ও অনন্ত সেট(Finite and Infinite set)

359
359
Please, contribute by adding content to সান্ত ও অনন্ত সেট(Finite and Infinite set).
Content

বাস্তব সমস্যা সমাধানে সেট

289
289
Please, contribute by adding content to বাস্তব সমস্যা সমাধানে সেট.
Content

সেটের সংযোগ(Union of set)

334
334

A ও B সেট হলে এদের সংযোগ সেট হচ্ছে AB={x:xA অথবা xB}। অর্থাৎ A ও B উভয় সেটের সকল উপাদান নিয়ে গঠিত সেটই AB|

Content added By

সেটের ছেদ(Intersection of set)

460
460

A ও B সেট হলে এদের ছেদ সেট হচ্ছে AB={x:xA এবং xB}।

অর্থাৎ A ও B সেটের সকল সাধারণ উপাদান নিয়ে গঠিত সেটই An B

উদাহরণ ৮. সার্বিক সেট U={0, 1, 2, 3, 4, 5, 6, 7, 8, 9} এর দুইটি উপসেট  A = {x : x মৌলিক সংখ্যা} এবং B = {x : x বিজোড় সংখ্যা}।

তাহলে A = {2, 3, 5, 7} এবং B = {1, 3, 5, 7, 9}।

সুতরাং AB = {1, 2, 3, 5, 7, 9}, AB = {3, 5, 7},

A'= {0, 1, 4, 6, 8, 9}, B' = {0, 2, 4, 6, 8},

A'B' = {0, 1, 2, 4, 6, 8, 9}, A'B' = {0, 4, 6, 8},

AB'= {0, 1, 2, 4, 6, 8, 9}, AB' = {0, 4, 6, 8} ।

Content added By

ব্যবধি(Interval)

1.1k
1.1k

a ও b বাস্তব সংখ্যা এবং a < b হলে

ক) a,b=xR:a<x<b  কে খোলা ব্যবধি (open interval) বলে।

খ) [a,b]={xR:axb} কে বদ্ধ ব্যবধি (closed interval) বলে।

গ) (a,b]=xR:a<xb এবং [a,b)={xR: ax<b} কে যথাক্রমে খোলা-বদ্ধ ও বদ্ধ-খোলা ব্যবধি বলে।

Content added || updated By
টপ রেটেড অ্যাপ

স্যাট অ্যাকাডেমী অ্যাপ

আমাদের অল-ইন-ওয়ান মোবাইল অ্যাপের মাধ্যমে সীমাহীন শেখার সুযোগ উপভোগ করুন।

ভিডিও
লাইভ ক্লাস
এক্সাম
ডাউনলোড করুন
Promotion